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The angular-momentum-dependent pseudopotential orbital 
radii,1 rp defined as the radius at which the potential, K;(r), of 
the outermost electron crosses over from negative to positive values 
iViiri) = 0), especially <rsp) (= (r, + rp)/2), have been used as 
quantum mechanical coordinates (especially R0 = (rs + rp)/2 
and RT = \(rs - rp)| for structural discrimination mainly through 
the efforts of Phillips2 and Villars.3 Zunger,4 using ab initio 
atomic methods, calculated these radii, which were correlated 
with length scales such as covalent radii or Pauling's tetrahedral 
or univalent radii5 derived from condensed matter science. Such 
core radii have a near invariance with respect to chemical 
environment.4 On the other hand, structural refinement proce­
dures6 often require a matching of interatomic distances obtained 
from an empirical tabulation of the effective crystal radii, CR, 
for cations and anions. The crystal radii tabulated by Shannon7 

are strongly dependent on the chemical state, including valence, 
coordination number, spin-state, etc. We have examined the 
proposition that, since the quantum coordinates such as rs and 
/p may be used to discriminate structures of AB compounds refined 
from distances obtained from crystal radii, the crystal radii may 
be derived from these quantities. We demonstrate in this 
communication such a relationship. 

In many of the structural delineation plots for binary compounds 
AB, the crucial quantum mechanical coordinate seems to be Rx, 
which depends on the difference between r5 and rp orbitals with 
their different bonding characteristics. We have plotted in Figure 
1 the largest and smallest coordination-number-dependent crystal 
radii (CR) for the various positively charged non-transition-metal 
ions (cations) as tabulated by Shannon, vs respectively the largest 
and smallest orbital-angular-momentum-dependent pseudopo­
tential orbital radii rx (1 = 0 or 1). Surprisingly, we obtain a fairly 
linear plot (variance <0.1) obeying the relation 

C R + = 1.93r,- 0.289 (in A) (1) 

Better fits (variance < 0.006) are obtained when we plot rs vs the 
smallest crystal radii (CRmin

+ (= 2.30rs - 0.51 (in A), Figure 2a) 
and /-p vs the largest crystal radii CRmax

+ (= 1.62rp - 0.07 (in A), 
Figure 2a). The two relations yield an average value of CR+ 

which is in agreement with that in eq 1. 
Similar plots for the anions using the crystal radii as listed by 

Shannon are shown in Figure 1 (variance <0.001). It may be 
important to note that the maximum difference is seen for the 
first row elements such as O and F which have the maximum 
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Figure 1. Plots of crystal radii (from ref 7) and half of internuclear 
distances against pseudopotential orbital radii as calculated by Zunger 
(ref 4) for non-transition elements. Smallest cation crystal radius CRmJn

+ 

(O), vs smallest pseudopotential orbital radius. Largest cation crystal 
radius, CRnM1

+ ( • ) , vs largest pseudopotential orbital radius; dash and 
dot line gives the best fit. Anion crystal radius, CR-, vs pseudopotential 
orbital radii (O and • for rs and rp, respectively); dash line gives the best 
fit. Half internuclear distance in normal state of elements, rbtmo (A)> v s 

tap) (= fa + ^ / 2 ) ; full line gives the best fit, while broken line 
corresponds to eq 3. 

coordination number dependence of their ionic radii.7 The best 
fit is obtained for the relation 

(CR") = 2 . 5 6 r e + 1 . 0 5 (in A) (2) 

We have also shown in Figure 1 the plot of (ri?) vs rnomo, half 
the homopolar bond distances of the elements. The linear plot8 

(variance <0.013) fits well with that expected from an average 
of (CR+) and (CR-) so that 

'•homo = [ (CR + ) + (CR")] /2 (3a) 

= 2.23(r s p>+0.38 (3b) 

The pseudopotential orbital radius of the hydrogen atom is 
taken as 0 A. The constant terms in eqs 1-3 are therefore the 
corresponding radii of hydrogen atom. Thus the radii as well as 
bond lengths seem to be determined by a term proportional to the 
pseudopotential core radii, rp with all environmental or charge-
transfer factors being determined by the constant terms derived 
from the single electron hydrogen atom\ This explains the 
transferability of the r/ to various structures as well as the chemical 
environment dependence of the crystal radii through their rs and 
rp dependence and not their nominal valence. 

We show in Figure 2 that the values of the recently calculated 
radius, rm, of mononegative ions by Sen and Politzer9 falls on the 
same line as that of (CR-) when plotted against (rsp). rm is the 
radius at which the electrostatic potential V{r) has a minimum 

(8) We find that for all transition-metal elements a simple multiplicative 
factor of 1.25(S + 1) - 0.08 reproduces Th01110 within the scatter in Figure 1, 
where the spin S is obtained from the nominal d orbital occupancy of the 
elements. Equation 3 may also be used to predict heteropolar bond distances 
as we shall show in another communication. 

(9) Sen, K. D.; Politzer, P. J. Chem. Phys. 1989, 90,4370. These authors 
have shown that "a mononegative ion has a minimnum in its electrostatic 
potential, V(r), at a radial distance, rm, that encompasses a quantity of electronic 
charge exactly equal to the nuclear charge". At rm, V(r) is a minimum. For 
such a potential, rm is finite only for a negative ion. 
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Figure 2. (a) Smallest CR+ (O) vs r, (full line) and largest CR+ (A) 
(from Shannon, ref 7) vs rp (dashed line, from Zunger, ref 4). (b) Plots 
of /t> for cations (•) (from Deb et al., ref 11) vs (rv) (= (r, + rp)/2; 
from ref 4) for alkali metals. The points for Cu+ and Tl+ shows the 
characteristic disagreement observed with transition metals and other 
non-octet elements. n> for singly charged anions (A) (from ref 11) vs 
(^p); plots of rm (O) (see text; from ref 9) vs </-,„). The straight lines 
correspond to those in Figure 1, with dashes (for cations) and dashes and 
dots (for anions), while the full lines are from Figure 2a. 

for these mononegative ions. According to the density functional 
theory,10'11 the chemical potential p = -V(r) at a radius rD 
corresponding to the constant universal one-electron density p-
(rD) (= 0.008 714) when (ST/Sp) = -(5ex/5p) - (5tc/8p), where 
T[p], e,[jo], and ec[p] are respectively the kinetic, exchange, and 
correlation energy functionals. Deb and co-workers11 have 
calculated rD for neutral and singly charged positive and negative 
ions. The calculated values of ro for negative ions corresponds 
closely to the value of rm and is related to the pseudopotential 
radii in nearly the same manner as the crystal radii of anions 
(Figure 2). The values of rD for alkali metal ions are in good 

agreement with the plot of largest crystal radii vs the pseudo-
potential orbital radii, rv (Figure 2b). 

The nearly similar behavior of rm, r^ (p. = V{r)), and CR-

when plotted against <r8p) indicates that the former set of radii 
have probably the same origin, so that the minimum of the 
electrostatic potential corresponding to rm is also close to the 
condition defining the radius rD at which the function containing 
the kinetic energy, exchange, and correlation energy contributions 
cancel each other. The electrostatic potential V(rD) is equal to 
the chemical potential /*D at r = r^. Since the chemical potential 
p is a constant throughout the system at equilibrium12 and the 
interatomic bond distances are given by the sum of CR+ and 
CR-, we expect that the chemical potentials for the singly charged 
cationic (MD+) and anionic (PD~) components of the homopolar 
bond should equal each other. The corresponding electrostatic 
potentials K+(^D) and V~(rv) for monopositive cations and 
mononegative and anions, respectively, should also be the same 
at the point of contact (defined by /t> for the respective ions) of 
the two ions. Since the effective charges encompassed by the 
core radii rD are of opposite sign, V+(^r0) = V~(rD) = 0 when this 
condition is satisfied. The inescapable conclusion, therefore, is 
that at equilibrium the covalent bond distances are determined 
by the sum of cationic and anioni radii defined for a constant 
zero chemical potential or zero electrostatic potential surface. 

Politzer et al.i0 have pointed out that the chemical potential 
p = -(I + A)/2 = -V(r) at /•„ or rmv of homopolar M-M bonds, 
where/and A are the ionization potential of the atom M (required 
to form M+) and electron affinity of M (or ionization potential 
of M-), respectively. They were, however, unable to obtain a 
"fundamental" understanding of their observation. Equation 3a 
now seems to provide the justification as we require / and A to 
ionize the atoms and to return to zero potential. It is thus 
extremely satisfying to note the transparent manner in which 
empirical experimental observations of many-body science are 
linked with the transferability of simple theoretical calculations 
of atomic physics. 

Note Added in Proof: The effective crystal radii used in Figures 
1 and 2 are the corresponding effective conic radii of Shannon 
(ref 7). 

(10) Politzer, P.; Parr, R. G.; Murphy, D. R. / . Chem. Phys. 1983, 79, 
3859. 

(11) See: Deb, B. M.; Singh, R.; Sukumar, N. THEOCHEM 1992, 91, 
121 and references therein. 

(12) Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. / . Chem. Phys. 
1978, 68, 3801. Politzer, P.; Weinstein, H. / . Chem. Phys. 1979, 71, 4218. 


